Consistency of Semiparametric Maximum Likelihood Estimators for Two-Phase, Outcome Dependent Sampling

نویسندگان

  • Brad McNeney
  • Aad van der Vaart
  • Jon A. Wellner
چکیده

Semiparametric maximum likelihood estimators have recently been proposed for a class of two-phase, outcome dependent sampling models; e.g. Breslow and Holubkov (1997), Scott and Wild (1998), and Lawless, Wild, and Kalb eisch (1999). The estimators studied by these authors are predicated on the estimates of the underlying covariate distribution being concentrated on the observed covariate values. Here we give conditions for consistency of the (restricted) maximum likelihood estimators proposed by these authors. We also consider the corresponding maximization problems in further detail and show that the unrestricted maximum likelihood estimators may have support on additional points in the covariate space. In the companion paper by Breslow, McNeney, and Wellner (2000a), eÆciency and asymptotic normality of the restricted maximum likelihood estimators are also established.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Consistency of Semiparametric Maximum Likelihood Estimators for Two-Phase Sampling

Semiparametric maximum likelihood estimators have recently been proposed for a class of two-phase, outcome-dependent sampling models. All of them were "restricted" maximum likelihood estimators, in the sense that the maximization is carried out only over distributions concentrated on the observed values of the covariate vectors. In this paper, the authors give conditions for consistency of thes...

متن کامل

Large Sample Theory for Semiparametric Regression Models with Two-phase, Outcome Dependent Sampling By

Outcome-dependent, two-phase sampling designs can dramatically reduce the costs of observational studies by judicious selection of the most informative subjects for purposes of detailed covariate measurement. Here we derive asymptotic information bounds and the form of the efficient score and influence functions for the semiparametric regression models studied by Lawless, Kalbfleisch and Wild (...

متن کامل

Large Sample Theory for Semiparametric Regression Models with Two-Phase, Outcome Dependent Sampling

Outcome-dependent, two-phase sampling designs can dramatically reduce the costs of observational studies by judicious selection of the most informative subjects for purposes of detailed covariate measurement. Here we derive asymptotic information bounds and the form of the efficient score and influence functions for the semiparametric regression models studied by Lawless, Kalbfleisch, and Wild ...

متن کامل

Estimating Multiple Treatment Effects Using Two-phase Regression Estimators

We propose a semiparametric two-phase regression estimator with a semiparametric generalized propensity score estimator for estimating average treatment effects in the presence of informative first-phase sampling. The proposed estimator can be easily extended to any number of treatments and does not rely on a prespecified form of the response or outcome functions. The proposed estimator is show...

متن کامل

Robust semiparametric M-estimation and the weighted bootstrap

M-estimation is a widely used technique for statistical inference. In this paper, we study properties of ordinary and weighted M-estimators for semiparametric models, especially when there exist parameters that cannot be estimated at the √ n convergence rate. Results on consistency, rates of convergence for all parameters, and √ n consistency and asymptotic normality for the Euclidean parameter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000